Monday, August 22, 2016

The solar saga - part 2: Getting the system online

In part one (March 2, 2016) I wrote about why I chose to use a series string inverter system.  (Hint:  It was to prevent radio-frequency interference.)  To read part one, click on the link here:  The Solar Saga - Part 1:  Avoiding Interference (Why I did not choose microinverters.)

Eventually, I was able to get the system "online" in late April even though everything solar-related had been in place for over 2 months.  Why the delay?

Figure 1:
Slip-sliding around, the work crew clearing ice and snow off
the metal garage roof.  Later, they wielded a propane
"weed burner" to loosen the remaining ice and snow and
dry the metal roof panels.
Click on the image for a larger version.
As is often the case in life, things don't always go exactly according to plan!

Installing the panels:

Going back a bit, the solar panels and inverter were actually installed in February.

In the winter.

In the snow.

Think about that for just a moment, particularly considering when the system was actually put online.

Figure 2:
The mounting rails for the solar panels, installed.  If you
look carefully in the background you can see where
someone fell hard on the ridge cap, slightly crushing it!
Click on the image for a larger version.
To be sure, there was a lot to do, but everything seemed to be going according to plan, with no obvious trouble (of which I was ever informed) with the city in pulling permits.

Part of the install actually began a few weeks before this when a survey crew came out to check out the "sun situation" where the panels were to be installed.  As soon as they arrived they placed a ladder against the garage roof and then I heard some muttering:  They'd just realized that they had left the device that analyzes the sun's path and potential shadows at the previous job some 15-20 miles north in another county.  Instead of being able to plop this device down in the locations of the solar arrays they squinted with expert eyes at the trees and sky and declared more or less "I don't think that shade will be a problem."  Who was I to argue - they were professionals!

Figure 3:
The installed eastern solar array  At the time that the picture
was taken the system was wired up, but without a net meter it
couldn't be "officially" used.
Click on the image for a larger version.
Aside from lots of slipping and sliding on the snow-covered metal roof, the installation seemed to go well with the rails having been installed the first day and the roof penetration - a set of rubber "Flasher" bushing type thing being used to seal about the electrical conduit that emerged from from within the garage itself, one for each array.

A few days later the panels were on the roof and the inverter wired up and connected to the new electrical sub-panel that I'd put in the garage a few weeks before.  While the system worked, I really couldn't use it as the "Net Meter" was not yet installed and any excess power that I produced would be charged to me just as if I'd actually used it!
Figure 4:
A screen shot of the system producing just under 1400 watts
in "Standalone" or "Island" mode - a configuration that allows
the solar electric system to produce useful energy even if the power
grid was down, unlike a microinverter system where the potential
electrical solar power from the panels is completely
inaccessible if the power is out!
Click on the image for a larger version.
While I could not do the "net meter" thing, one feature provided by the Sunny Boy inverters - but not with microinverter systems - is the "Secure Power System" or "SPS" (tm) that will allow power "islanding".  In other words, if the main breaker is shut off and a switch is flipped, the inverter will provide up to 1.5kW of power (12 amps, 125 volts) - even if the mains power is unavailable, provided that there is adequate sun, of course:  Just try that with a microinverter system!

Figure 5:
The installed Sunnyboy 5+kW inverter and the garage
sub-panel to which it is connected.   Below and
to the left of the inverter is the DC disconnect switch
for the two independent MPPT solar panel strings
(the "East" and "West") and just to the right
of it is the "SPS" or "Standalone" power outlet capable of
providing up to 12 amps at 125 volts (1.5kW) even
if the electrical grid is offline.
Click on the image for a larger version.

A problem with the electrical service entrance:

From the beginning I was informed that my main electrical panel - the place where the power from underground gets to the house - would have to be replaced.  Fortunately, this cost was "baked into" the cost of the system itself and since I'd replaced the sub-panel in my garage myself, the installers would cover it.  In asking around I determined that in my case, the typical cost for this would be in the $1000-$1500 range including all parts and labor.

The reason that the old panel had to be replaced was ostensibly due to the "20% rule", and in my case it went something like this:

My panel, originally installed when the house was new (early 1970s) was rated for 100 amps on the bus.  The "20% rule" said that it was permissible to have 20% above this value, or up to 120 amps.  The problem was that my photovoltaic system would, being capable of 5.3 kilowatts, could in theory of being capable of putting 22-24 amps (depending on voltage) on the bus and this, combined with a 100 amp main breaker, meant that I could put a total of 124 amps on the bus.

This would not pass muster - or inspection - so the panel was to be upgraded to a 125 amp unit with a 100 amp breaker which, according to the same rule, should allow a total of 150 amps on the bus.

A few days before the date in late February when the service upgrade was scheduled I got a call from the contractor saying that they couldn't do it:  The power company would not sign off because of the location of the gas line and meter with respect to the electrical panel itself.  After being informed of this I took a walk through my neighborhood and observed that about a third of the houses had their electrical panels "on top" of the gas meters.

Figure 6:
 The old meter and below it, the gas meter for the
house:  Since the solar was now connected, it was
required that the red warning tag be attached even
before the net meter was installed.
The power company ultimately determined that the
electrical panel and its underground conduit had to be
relocated to a minimum of 36" (about 92cm) distant from
the gas meter and any of its piping.  I couldn't be sure,
but it looked as though the gas meter was installed
after the electrical with the original riser pipe for the
electrical being wedged between the
house and the gas meter!
Click on the image for a larger version.
As it turns out, current code in this area requires at least a 36 inch separation between the closest part of the gas line and meter and any part of the electrical entrance.  What was surprising is that none of the contractors that had visited my place to assess the scope of work had caught this, let alone planned for it!

In my case the gas meter was literally touching the conduit from the underground power feed and the panel itself was about 3 feet above the gas meter.  Since the panel was to be upgraded, it had to meet current code so it would have to be moved.  This also meant that the underground power feed, which was a length of "direct burial" wire would also have to be redone, placed in 4" conduit and run to the location of the new meter.

All of this meant a delay - about 4 weeks, as it turned out - as the plans had to be revised and arrangements had to be made to coordinate the schedule of the electrical contractor with the schedule of the city inspector along with having "Blue Stakes" come out and mark the utilities so that yet another contractor could dig a trench in my front yard from the power junction to the location of the new meter.  While this meant that it would be another 4 weeks or so before the work would be done - and likely another 2-3 weeks after that before my "Net Meter" would be installed - it also meant that the company in charge of all of the work would end up "eating" the difference in cost which was probably something in the area of an extra $1000-$1500 on top of the already-allocated cost for panel replacement.


There is a device called a "Connect DER" (tm) that may be used in many locales to bypass the need to upgrade or replace the house's electrical service when solar power is installed.  This device plugs into the original meter base and is sandwiched between the original panel and the power company's electrical meter so that the additional current of the solar power system does not appear on the house's electrical bus since the connections to the solar is made on the Connect DER itself with a built-in circuit breaker for electrical protection and to allow it to be disconnected.

For various reasons this sort of device was apparently not an option in my case - possibly because of the fact that the gas and electrical piping were co-located. 

Figure 7:
The narrow trench that magically appeared in my yard,
running between the underground junction from the
electrical utility to the approximate location of
the new panel.
Click on the image for a larger version.
Finally, the day arrived where there appeared a trench in my front yard (figure 7).  A few days later the electricians arrived and installed the new panel and a conduit in the trench - but I couldn't help but notice that it was only about 23" from the gas lines, a fact that I mentioned to them when they arrived the next morning (figure 8).  After a bit of digging and drilling, the new panel and conduit was suddenly another 18" or so farther away from gas meter than it had been.  At about this time the power company and city inspector showed up to disconnect the power from the mains and pull new conductors into the conduit under the watchful eye of the inspector who gave preliminary approval to the work plan.

Off came the old panel to be replaced with a weatherproof junction box, connected to the new panel with a run of conduit.  In the new junction box - at the location of the original panel - a "horse tail" of wires appeared representing the individual circuits in the house, each of which had to be spliced with a new set of conductors wired to the new panel.  After about 4 hours of work everything was turned back on and I was back in business.

Figure 8:
Oops!  That ain't no 36" separation between the gas
and electrical!  The vertical pipe on the left, against the
brick was the conduit conveying the electrical to
the old meter.
Click on the image for a larger version.
A day or two later the city inspector came back to meet with me and a representative of the contractor to survey the work done both with the installation of the new panel and the photovoltaic system.  Finding everything to his satisfaction he gave his approval which also meant that the power company was notified so that the "Net Meter" would be installed.  A couple days after this a small work crew from a landscaping company appeared, filling in the trench in the front yard and replanting the sod that had been removed.

About two and a half weeks later I came home from work to find a notice from the power company stuck to my front door indicating that the net meter had, in fact, been installed so I happily closed the necessary breakers to put the system online.  Since it was already the evening, not much power was produced that day, but it was now ready for the next days' sun!

* * *

Figure 9:
In mid-job, the "horse tail" wires from the original
breaker panel emerging from the junction box that
had been installed in the approximate location of the
original breaker panel.  New wires were run
between it and the new service entrance/breaker panel.
I have since painted the new junction box and conduit a
red color to somewhat match the brickwork.
Click on the image for a larger version.
A minor shading problem:

As of this posting it has now been about four months since the system was put online and it has been working quite well.  One minor complication - something that I would have addressed earlier had I been aware of it - has to do with the fact that some of the eastern panels were located where they get shade until a bit after noon, reducing the output of the east array by 15-20% during that time.

By late March I was noticing that the northern-most panel was starting to be shaded by a nearby pine tree and by June and July, the angle of the sun had precessed to the point where at least three panels were being completely shaded in the morning, the shade finally clearing about an hour before "local noon" - or around 12:45.  Had I been aware of this I might have requested to have the east panels arranged somewhat differently to reduce this effect as there is plenty of room on the roof to do this

Would microinverters have improved this situation?  Perhaps by only 5% or so:  The real problem is that the panels get shadowed lengthwise, equally affecting each of the three sections of the panel isolated by the built-in "shade tolerance" diodes so these diodes don't have a useful effect when shading occurs in that aspect which means that it would be more difficult to extract power from it by any means.

A month or so after installation I was able to get them to come back out and do the formal shade analysis that they hadn't done before starting the job and it confirmed what was empirically observed - plus it gave a bit of information as to what problems could arise in the future in terms of tree growth.

* * *

No RF noise at all!

As far as my one of my original concerns - that of generated RF noise - I can detect absolutely nothing from the photovoltaic system at all at any frequency.

The "quiet-ness" of the system can be borne out by the fact that even if one brings a portable receiver right up to the panels or the inverter, nothing at all can be heard from it except when its antenna gets within a few inches of the inverter's LCD panel.

Where I do get some RF noise is from sources unrelated to the solar power - switching type "wall warts" scattered throughout my house, powering various things, but most of the "problem" devices have already been quieted as described in previous postings on this blog, see:

* * *
Generation of power - observations:

In the (over) four months of operation the cumulative amount of power has exceeded my actual usage by about 300 kWh so the recent power bills have been low - just the "minimum charge" of less than $10.  According to my calculations based on past and current usage I expect to use up that surplus in the winter when the "production" of the the photovoltaic system will be much lower due to the lower sun angle, shorter days, occasional snow cover and the tendency for there to be extended temperature inversions that can block sun for days at a time.

At the moment I do not have a "refrigeration" whole-house air conditioner - only an evaporative (a.k.a. "swamp") cooler and a wheel-around "room" air conditioner for those relatively rare days that it is both hot and humid, but I'm considering getting a whole-house A/C sometime in the future:  When I do that I may consider increasing the capacity of my photovoltaic system.

While the system has eighteen 285 watt panels which are theoretically capable of 5130 watts, the slant of the roof (north-south ridge line with panels mounted flat on the east and wet sides), the operating temperature of the panels (an output power reduction of 0.45% per degree C panel temperature) and the actual solar insolation (e.g. the actual amount of solar energy) has limited the peak power to around 3800 watts on hotter, crystal clear days and about 4300 watts on cooler days.

If one does the  numbers this should not be too surprising.  For example, the 285 watt panel rating assumes a cell temperature of 25C.  On a hot summer day where the ambient air temperature is around 38C and the panels themselves are around 50C (a fairly modest temperature as my roof is metal and very light-colored which keeps it quite cool) that means that assuming a temperature derating of about 0.5%/C that I have lost - from heat alone - 12.5% of power, or can expect only about 250 watts per panel, or 4500 watts from the system - and that would assume that the sun was illuminating the panel at optimal right-angles - which it really cannot at any time of year.

Since my panels are on a roof with a moderate east-west pitch, I lose another 15% or so of solar insolation on a typical summer day due to the angle, yielding a number that is actually pretty close to the 3800 watt peak.  What I have observed is that because of the east/west angle of the two strings that I have a slight "double" peak around "local" noon when, before noon the angle is nearly optimal for the east array and then similarly, after noon, for the west array.  To make matters worse, during many days of the summer in recent years the valley's air is a bit murky due to some smog and the frequent wildfires that seem to be a regular occurrence in the western U.S. these days, knocking off another 10-15% of production.

What this means is that, in theory, I could have used a 4kW inverter if I was willing to tolerate a bit of "clipping" (e.g. more available photovoltaic power than the inverter will produce) on optimal days (e.g. cool spring or fall days with clear air) and possibly have averted all of the hassle with the 20% rule and the replacement of the electrical panel, but considering the state of the older electrical distribution panel, its replacement was probably for the best! If I wished to do so, I could (in theory) add another 4 panels to my system which would just about bring it to clipping under optimal conditions and to around 4600 watts on a normal, summer day.

The other option - if I needed more capacity after, say, adding a house air conditioning unit - would be to simply install another set of panels - maybe 14-16 or so - and a separate inverter - a 3.6 kW unit, perhaps:  This would still stay within the 20% rule for the new electrical panel and add a degree added redundancy.  Since the "hard" work (e.g. update of the electrical, etc.) has already been done, such an addition would be comparatively easy.

As of the time of this writing (mid August, 2016) it would appear that the company that I used for the installation of my system (Auric Solar) will no longer consider the use of series-string photovoltaic systems, at least for residential customers - a statement based on a conversation a friend and fellow amateur radio operator had with a company representative.  The impression given - perhaps unintentionally - was that they had enough business that they didn't necessarily need to offer flexibility or other system options to their potential customers.

What this means is that for fellow amateur radio operators who wish to avoid an "RF noisy" installation, I've recently been suggesting another company.

To read part one of this article click on the link here:  The Solar Saga - Part 1:  Avoiding Interference (Why I did not choose microinverters.)

Tuesday, August 9, 2016

A low-voltage disconnect for 12 volt lead acid and lithium batteries

Figure 1:
The as-built and working prototype constructed.
Click on the image for a larger version.
There are two things that you don't want to do with any rechargeable battery on a routine basis:
  • Overcharge it.
  • Overdischarge it.
While the above are true for lead-acid batteries, they are particularly true of Lithium-Ion chemistries, but for different reasons.

With Lead-acid batteries:
  • Lead-acid batteries - particularly the "flooded cell" types (e.g. those to which you can add water) can handle quite a bit of overcharging as long as the electrolyte level is maintained.  "Sealed" batteries (e.g. AGM, or those that many mistakenly called "gel" cells) can handle some overcharging, but only to an extent before their pressure vents release accumulated gasses, reducing the amount of usable electrolyte, which is why they should never be "equalized".
  • Lead-acid batteries can also handle being run completely down - as long as you don't keep them in that state for very long (a few days at most - as little time as possible) and don't do it very often.  In other words, if you run an otherwise healthy lead acid battery completely dead and immediately recharge it, little actual damage is likely to have been done other than taking a bit of life off it farther down the road.  In cold-weather environments, while the degradation (primarily sulfation) is dramatically slowed, extremely deep discharge also reduces the specific gravity, raising the electrolyte's freezing point, increasing the possibility of the battery being damaged/destroyed at very low temperatures if it does freeze.
 With Lithium-ion batteries:
  • If a battery is overcharged, it will start to chemically decompose.  Gross overcharging - while tolerated at least briefly by lead-acid batteries - may result in a lithium-ion battery venting and/or exploding, possibly catching fire.
  • If a battery is over-discharged it will chemically decompose, often with the contained lithium changing into a more volatile - and not useful - state.  Severe over-discharging (e.g. below 2 volts per cell - this voltage varies depending on chemistry) can mean that the battery can never safely be charged again or, in some cases - if the voltage is only allowed to get down to this general area and not lower (again, the voltage varies according to chemistry) some special charging precautions are required (e.g. a specific, very low-rate trickle charging regimen) to "recover" this battery.
  • There are also some specific temperature-related restrictions with lithium-type batteries regarding their use and charge/discharge and these are noted by their respective manufacturers.
Avoiding over-discharge:

The avoidance of overcharging is usually pretty easy:  Just use the appropriate charging system - but over-discharge is a bit more difficult, particularly if the battery packs in question don't have a "protection board" with them.

Lead acid batteries (almost) never come with any sort of over-discharge protection - one must usually rely on the ability of the device being powered (e.g. an inverter) to turn itself off at too-low a voltage and hope that the threshold is sensible for the longevity of a 12 volt battery system.  For low-to-moderate loads (e.g. 1/10th "C" or so) a pretty safe "dead battery" voltage for a 12 volt lead-acid battery is around 11.7 volts - or somewhat higher for heavier loads.  Again, after disconnect, it is not a good idea to keep it in a discharged state for any longer than possible.

Many larger (e.g. >10 amp-hour) lithium-iron phosphate (LiFePO4) do not routinely come with "protection" boards unless it is ordered specially or includes some sort of "Battery Management System":  Batteries in this category can include the "Lead Acid" replacements sold for use with motorcycles and off-road vehicles  and some of the "raw" LiFePO4 batteries available from many vendors, such as the 20 amp-hour modules made by GBS.

While it is also important to equalize LiFePO4 batteries when charging (refer to this post - Lithium Iron Phosphate (LiFePO4) batteries revisited - Equalization of cells - link) the more immediate danger in routine use is accidental over-discharge.

A simple low-voltage disconnect circuit:

Again, for lithium batteries one may install "protection" boards that prevent accidental over-discharge and, in some cases, provide charge equalization - but such things are much rarer for lead-acid batteries, but such a circuit is quite simple and is applicable to either Lithium or Lead Acid batteries.

Figure 2:
Schematic diagram of the low-voltage disconnect circuit.
Not shown is overcurrent protection (e.g. fusing) that should be present on the output of the battery - see text below. 
If desired, LED1 can be placed in series with R2 which could be changed to 2.2k and R7 be omitted.
Click on the image for a larger version.

These days it is rather easy to construct a low-voltage disconnect circuit using readily-available components:  The diagram of one such circuit may be found in Figure 1.

How it works:

The RESET button is pressed, applying a positive voltage to the gate of N-channel power MOSFET, Q1, turning it on, which then connects the "BATT -" output terminal to the "LOAD -" terminal.

If the voltage at the "Ref" terminal of U1 is above 2.5 volts, as determined by the voltage divider consisting of R4, R5 and R6, the cathode of U1 is connected to its anode (e.g. "Load -"), pulling the base of Q2 down, making it negative with respect to its emitter, R2 limiting Q2's base current to a safe value and providing enough current for U1 to function, and turning it on.  With Q2 turned on, Q1 is "latched" on, even when the RESET button is released.

If the voltage at the "Ref" terminal of U1, representative of the voltage across the LOAD terminals, drops below 2.5 volts, U1 turns off and the base of Q2 gets pulled positive to the emitter voltage by R1, turning it off.  With Q2 turned off resistor R8 pulls the gate of Q1 down to its source, also turning it off and disconnecting the load.  Because of the "latching" effect, once this has happened the load will never be turned on again until the RESET button is pressed.  This happens because with Q1 turned off, U1 is without voltage (e.g. "Load -" rises to the same voltage as "Load +) and can never turn Q2 (and thus, Q1) back on again.  Even though pressing and holding the RESET button will connect the load even if the voltage is below the threshold, until the voltage rises above the threshold the circuit will not stay "on" once the RESET button is released.

To accommodate a range of voltages, U1's "Ref" terminal is connected across the output (Load +, Load -) with R4 and R6 to "scale" the range of potentiometer R5 to have a threshold in the 8-16 volt range:  Without R4 and R6 the usable range of R5 would be compressed to a very small portion of the overall rotation and make adjustment touchy, but with these resistors setting R5 at mid-rotation yields a threshold of around 11 volts.

Note the presence of capacitors C1 and C2:  C1 provides a bit of filtering of the sampled output voltage to prevent brief current transients that might momentarily drag the voltage down below the threshold, "falsely" causing an undervoltage condition from being detected.  Similarly, C2 slows the "fall" time of Q1's gate voltage, preventing it from shutting off instantly in response to a brief spike of current - and it also provides some degree of protection of Q1's gate in response to possible voltage transients.

While not explicitly tested, the presence of C1 and C2 should provide a modicum of RFI protection:  If your environment includes high RF fields - such as powering a 100 watt amateur transceiver - this could be considered in testing and the construction/layout, knowing that such a transceiver can also impose very brief, high-current loads on the battery can causing momentary brown-outs due to I*R drops in the wiring and battery which could also trip this circuit.

Finally, the combination of R7 and LED1 provide an indication of power-on to the user.

Additional circuit notes:

The "high voltage" limitation of this device is primarily that of the gate voltage rating of Q1.  Most power FETs are rated for only +/- 20 volts gate-to-source voltage which means that it is suitable for no more than a "12 volt" bus (e.g. 10-16 volts or so):  If a higher operating voltage is required it will be necessary to add additional circuitry around the FET's gate to keep its voltage safely below its rating.  For an example of such circuitry see this article:  A Simple, effective, yet Inefficient Solar Charge Controller - link and taking note of components D1, R7, R8 and C4 surrounding Q3 in Figure 3 on that page.

If a lower cut-off than 9 volts  (or higher than 15) is required it will be necessary to recalculate the values of R4 and R6 (in Figure 2, above) to appropriately scale the adjustment range.

It should also be noted that if voltages below 10 volts are routinely required one should pay close attention to the saturation (e.g. "full on") gate voltage required for the FET that you plan to use:  Typical FETs do not achieve their lowest resistance until 8-10 voltage of gate-source voltage is present but there are "logic level" FETs available that will be fully "on" at around 5 volts.

Finally, there is a slight modification to the circuit depicted in Figure 2 that could be made:  Place LED2 in series with R2 and decreasing the value of R2 to 2.2k or so, omitting R7 entirely.  This modification not only saves a few milliamps of "on" current, but it also provides an indication of when the circuit is actually latched in its "on" state - particularly useful if the load has its own, separate power source which would cause LED1 to illuminate no matter the state of the disconnect circuit if wired according to Figure 2.


None of the components are critical, save the possible exception of R4, R5 and R6 which are selected to scale the adjustment range of R5:  While it is the ratios of these components that are important (e.g. one could use 4.7k, 1k and 1k for R4, R5 and R6, respectively) going much higher than the stated values may violate the minimum reference current specifications of U1 resulting in temperature/device variations of the set voltage thresholds.

The TL431 (U1) is a rather ubiquitous chip, found in practically every PC-type power supply made in recent years and is available in single quantities for well under $1.

Q2 may be practically any silicon PNP transistor with a rating of at least 30 volts while Q1 may be any N-channel MOSFET with a voltage rating of at least 30 volts and a current rating of at least 3 times the current that you plan to draw and an "ON" resistance of a fraction of an ohm.  For the prototype I used an F15N05 FET - a 15 amp, 50 volt device, more than adequate for the 3 amp load that was to be used, but one could use as "large" a power FET as you wish.  For "12 volt" operation make sure that the FET that you choose has at least a 20 volt gate-source voltage rating.  Higher-current FETs include the IRFZ44 (50 amp max.) and the PSMN2R7-30PL (100 amp max.) to name but two out of hundreds of possibilities.  If even more current is required one can parallel multiples of the same-type FET as needed, potentially providing many hundreds of amps of capacity, provided the wiring is appropriately considered.

Device layout is not critical aside from the use of appropriately heavy conductors to the source and drain leads of Q1 to carry the current.  For most applications a heat sink is not even required for the FET - particularly if one chooses a device with milli-Ohm range "on" resistance but there is never any harm in doing the calculations yourself to verify that this is true in your case with the FET that you choose.  Note that the "Batt+" and "Load+" lead is straight-through and the wire connecting this circuit to that "through" connection may be of light gauge:  The only caveat is that it is recommended that the connection to this circuit be connected closer to the "BATT+" terminal than the "LOAD+" terminal to minimize the resistance of that connecting wire which could cause the circuit to sense a slightly lower voltage than is actually present.

Finally, note that this circuit works by disconnecting the "BATT-" and "LOAD-":  Your battery's negative terminal must be completely isolated from the load for this circuit to work properly and protect your battery!

(Comment:  It is possible to reconfigure this circuit to disconnect in the positive lead, but this requires the use of a P-channel power FET:  A not-yet-built or tested circuit design is available on request.)

Adjustment and Operation:

For proper set-up an adjustable power supply is required and the procedure is as follows:
  • Set the power supply to a volt or two higher than the desired drop-out voltage.
  • Adjust R5, the potentiometer so that the wiper is closest to R6 to set the drop-out voltage to maximum (e.g. highest voltage measured betweenU1's REF terminal and LOAD- while the RESET button is being pressed).
  • Connect the device to the power supply using the BATT- and BATT+ connections.  No load is required for testing.
  • Press and release the RESET button:  The LED should stay on, but if not, check the adjustment of R5 to verify that it is providing the maximum voltage to U1's REF terminal.  If this checks out, check for proper resistor values of R4, R5 and R6 as well as proper wiring of U1.  Note that the circuit will not stay on if U1's REF terminal is below 2.5 volts.
  • Lower the power supply to the desired drop-out voltage.  The LED should stay on, but if not check the setting of R5.  (Remember that the useful range of R5 with the specified values of R4 and R6 is in the 8-16 volt area.)
  • Slowly rotate R5 until the LED just turns off.
  • Increase the power supply voltage slightly, press and release the RESET button and verify that the LED turns on and then goes off again when the voltage drops below the threshold, repeating the above steps as needed.
If a device is connected that has a high "starting" current it is possible that - particularly if the battery is weak or near the cut-off voltage and/or the cut-off device is located at the end of a long run of rather small-gauge wiring - it will drop-out before the voltage gets to the pre-set threshold.  If this happens and it is not practical to move the device closer to the battery or increase wire size to minimize lead resistance one can increase the value of C1 (to as much as 47uF) to slow the response time, allowing a momentary "brown out" to occur without tripping the device.  Note that with such a capacitor it will take longer to respond to such changes, but this should not be an issue from the viewpoint of protecting the battery.  The value of C2 can also be increased, but not much more than 1 uF should be used as this will excessively slow the "turn off" time of Q1, causing it to spend more time out of saturation and potentially dissipating more heat in the process.

Additional comments:

In this particular application Anderson Power Pole (tm) connectors were used on the input and outputs allowing this device to be easily removed from the circuit and configured as needed.

This device should also not be left connected to a battery in long-term storage as it draws several milliamps when it is in its "ON" state due to the LED and the current consumption of Q1/Q2 and associated resistors, R4-R6 and U1.  When in its "OFF" state its current consumption is negligible (likely in the nanoamp range) so if it is left connected and the battery gets drawn down, it will still do its job, disconnecting the load - and itself - from the battery and protecting it.  Note that if the load is "back-fed" from another source - say an AC/solar charger or power supply - and the voltage rises above the threshold, this will have the same effect as pressing the RESET button, turning the circuit on.

It is recommended that one NOT attempt to charge the battery "through" this device - at least at higher currents:  In theory it should work, but the current will flow backwards through the FET.  The reason for this is that while a FET that is turned "off" has an intrinsic "backwards" diode, it will drop 0.5-0.8 volts across this diode causing the FET to dissipate far more power than it would if it were actually "on".  If the charge rate is limited to a rather low current - perhaps less than 3-5 amps - the amount of heat dissipated by the FET should be tolerable.  Until the voltage rises above the cut-off threshold the FET will exhibit this 0.5-0.8 volt drop, but above this - when the circuit turns the FET on - this diode drop will largely disappear.   If you do this it would be a good idea to test it at your intended charge current in the worst-case scenario (e.g. highest current and adjust R5 so that the circuit will not trigger "on" during this charge, forcing the "diode drop" across Q1 to exist) and note if additional heat-sinking of U1 is needed.  Note:  If this is done, the "LED1-R2" modification noted above is recommended so that the LED will properly show the state of the circuit.

Not shown - but recommended - is the use of some sort of fuse or other overcurrent protection on the output of the battery.  It is recommended that the fuse rating be no higher than a third of the current rating of the FET to increase the chance that the FET will survive the surge current required to blow the fuse in the event of a dead short on the output.


Friday, July 15, 2016

Fixing the squealing auto-tuner motors in the Kenwood TS-450

This year I was setting up one of the club's Kenwood TS-450s in preparation for ARRL Field Day:  We had already set up the tents the night before and I was now laying out the radios.  Since it was morning - at an altitude of over 8000 feet (approx. 2440 meters) ASL, it was quite chilly on this late-June morning.
Figure 1:
The TS-450 with the tuner in need of attention.

Having connected the radio to the tri-band Yagi assigned to it I turned it on and heard a brief squealing sound emanate from the radio.  Suspecting that I was hearing the sound of a dry motor in the TS-450's auto-tuner, I changed bands - which caused the radio to re-tune - and heard even more squealing.

At this point it is worth noting the importance of this observation.  Since it was rather cold, whatever sparse lubricant was present in the radio was going to have less effect on its bushings, but it did indicate that the motor(s) in the tuner were in need of lubrication.  If the motors in the tuner get too "dry", they will seize up and then burn out as the tuner's "smarts" have no real way of knowing if the motor is stuck, applying power to them until a time-out occurs and when this happens, the user will likely retry a couple times.  Normally, the motors draw something in the 40-60 mA range when operating, but stalled, this can increase to well over half an amp, explaining how the motor can be damaged rather quickly - either by burning up the brushes, overheating the rotor windings, or a combination of both.

The reason why I was familiar with this problem is because several years ago a friend brought in a TS-450SAT in which the auto-tuner had failed.  In disassembling it, we quickly determined that one of the motors driving the tuning capacitor had seized and now measured open-circuit.  Having nothing to lose the motor was disassembled, but it was clear that the damage was more extensive:  While the brushes were somewhat burned - and could have been likely been burnished - and at least one of the rotor windings was open.

We soon discovered that (at the time, at least) a spare motor was not available from the radio manufacturer and that there were no recommendations for alternates to be found on the GoogleWeb:  We think that we did, finally, find a substitute and if this turns out to be successful, I'll be sure to write a post about it.

Not wanting to have this same fate befall the motors in this radio's tuner, I retrieved the radios (the club actually owns two TS-450SATs) after Field Day and took them into the shop to be worked on.  The (approximate) procedure for re-lubricating the motors is as follows, but first, a few weasel words.

Figure 2:
Cover over the low-pass filter, accessible after removing
the top cover of the radio.
Click on the image for a larger version.
  • This is sensitive and delicate electronic equipment:  DO NOT attempt to service it unless you have a familiarity with electronics and servicing techniques.
  • There is a real chance that - by accident or otherwise - the tuner/electronics/radio may be damaged/destroyed:  YOU are entirely responsible for determining if the procedure that follows is within your abilities.
  • Although there are low voltages involved, there is still some risk.
  • Remember that your situation may not be completely identical to this one and that some/all of the steps described may not apply to you.
  • You have been warned!
Removing the tuner module:

First, disconnect the radio from its power source, its accessories and the antenna.  Next, lay out a clean, well-lit work area and locate several small containers in which to place screws and various items.

Taking off the top and bottom covers of the radio - noting which color and type of screws go where - also remove the the internal cover that shields the low-pass filter compartment next to the antenna connector as depicted in Figure 2.
Figure 3:
 Coaxial cables connecting the tuner and low-pass.  Note
that the "front" cable has a piece of white heat shrink
tubing on it.
Click on the image for a larger version.

With this cover off, disconnect the two coaxial cables (see Figure 3) that connect from the tuner to the low-pass board.  Note that the cable to the front has a piece of white shrink tubing, marking it:  If it does not, mark that cable now.

 Also connecting the tuner and low-pass board, there is another multi-wire connector nearer the front:  Gently remove this connector, unplugging it from the low-pass board.  Also carefully unplug the flat ribbon cable that connects from the gap in the middle of the tuner module and goes to the front of the radio, observing how it is routed through the bracket on the front of the tuner module.

With the cables disconnected, the tuner unit may now be removed.

Figure 4:
 Showing the two screws along the bottom edge of the tuner.
There is one more screw near the front of the tuner which
would be in the upper-left corner of this picture, on the
top of the tuner.
Also note the white, flat ribbon cable along the top of the
tuner from the front and how it is routed under
the metal bracket with the potentiometers.
Click on the image for a larger version.
Along the right side of the radio (the front facing you) near the bottom of the main deck there are two screws (Figure 4) that should be removed and a third on the top of the tuner module, in the corner, near-ish the front as depicted in Figure 5.  Make sure that you note the style of screws that were removed and from where.

Carefully remove the tuner assembly, noting the orientation in which it was mounted.

With the tuner removed from the radio, carefully unplug the cable that goes the front of the tuner, plugging into a socket next to the flat ribbon cable mentioned above and shown in Figure 11.

Now remove its top and bottom covers, again noting the type of screws (probably the same as those holding the tuner in the radio) and setting them carefully aside.

Lubricating the motors' bushings:
Figure 5:
The location of the front screw holding the tuner in place.

There is a decision to be made at this point.  It is most likely that the "driest" motor bushings are those at the "front" (shaft end) of the motor - but it is also may be that both the front and rear bushings will need to be lubricated, in which case the motor will need to be removed and partially disassembled.

The first, safe assumption is that the front bushing is the culprit as it is not only the most exposed to the atmosphere, but it also gets exerted on it the most off-axis stress when coupling to the worm gear.  It is possible - with the aid of a hypodermic needle or using a small screwdriver or piece of wire suspending a drop of lubricant to work it into the bushing at the front of the motor without further disassembly, with the job of getting to the left-hand motor (the one marked with "L" on the green circuit board) being a bit more difficult.

Figure 6:
 A recommended, long-lasting lubricant to be used.  If this
is not available, use only a good-quality, light oil such as
sewing machine oil:  DO NOT use a generic "3-in-1",
motor, or a "household" of oil.
Click on the image for a larger version.
Now, unplug the multi-conductor cable - the one in the connector next to the one from which the flat ribbon cable was removed earlier:  This cable connects the two motors and potentiometers to the internals of the tuner board.

With the connector from the motors and position-sensing potentiometers now removed, it is also possible to power-up each motor, independently by applying voltage (6-12 volts - preferably from a power supply with a 1 amp current limit) to the soldered connections on circuit boards (marked "L" and "R") directly.  Doing so will cause the motor to operate - but observe carefully that when this is done, the motor can hit the hard stop of the potentiometers in an approximately half-meshed state in either direction:  In other words, the range of motion of the potentiometers goes from approximately half-meshed, continues clockwise (as viewed from the shaft end) through fully-meshed, un-meshed, and then half-meshed.  As soon as the motor hits the potentiometer stop, you must remove the power from the motor immediately.

Figure 7:
 The potentiometer board and 4 (removed) screws.  Note
that the potentiometers are connected to the board only by
their terminals:  Avoid bending/flexing them by
their leads.
IMPORTANT:  If you remove this board you will
have to recalibrate the potentiometers to the
proper capacitor position when reinstalling.  This
procedure is described later on in this posting.
Click on the image for a larger version.
When powering the motor(s) in this way, they may squeal - but note that how well what residual lubrication works will be somewhat dependent on temperature.  For re-lubricating the motor I would recommend "Super Lube", a PTFE (Teflon (tm)) based lubricant that is readily available from some auto parts stores or on Amazon:  This lubricant will not dry out and it attracts minimal dust and it has been used successfully by the author to "un-stick" quite a few galled/damaged shafts with good, long-lasting results.  If you do not have access to this lubricant or do not wish to get some, it is recommended that high-quality light sewing-machine oil be used:  Whatever you choose, DO NOT use everyday "3-in-1", motor or "Household" oil as this will fairly quickly dry out and get gummy!

Removing the motor assembly from the tuner.  This picture
shows two screws at the bottom edge of the plate holding
the motors.  Note that the screws are slightly
offset, under the circuit boards which means that the
screwdriver shaft will be at a slight angle which means that
you will need to take care when reinserting them to make
sure that they do not go in at an angle and get cross-
There are two similar screws on the same plate along
its top edge that must also be removed.
Click on the image for a larger version.
To lubricate the motors in-situ (e.g. without further disassembly) set the tuner on end with the green circuit boards at the end of the motors facing down.  Now put a small drop of oil on the end of a small screwdriver or wire (such as a straightened paper clip) and touch the shaft between the plastic worm gear and the body of the motor:  Surface tension should cause the drop of oil to run down the shaft and into the motor.  Using the same screwdriver/wire, gently nudge the worm gear up and down within the limits of end-play to help work the drop of oil into the bushing at the end of the motor.  If the oil immediately disappears or you aren't absolutely certain that any has gone in, add another drop or two in the same manner as above, moving the shaft up and down to help disperse it.  Once you are satisfied that some lubricant has made its way into the motor, wick up the excess with a bit of paper towel or tissue.

If it is not practical to access the end of the left-hand motor (the one with the "L") you may need to remove the assembly from the end of the tuner.

Additional parts that might warrant lubrication:

It is possible that other parts within the capacitors' drive trains are also in need of lubricant.  If you suspect this to be the case, check the following:
  • The ends of the worm/reduction gears.  Where the ends of the plastic shafts protrude through holes punched in the metal one can put a small drop of lubricant.
  • The bushings of the variable capacitors.  These are rather tight, by nature, but it is possible that the lubrication within is drying out.  To work additional lubricant into these heat the (metal!) bushings with a soldering iron to get them fairly hot (e.g. boiling water temperature) and then while still at an elevated temperature, put some lubricant on the shaft at each end that it emerges from the bushing:  The heat will cause the lubricant to become less viscous and as it cools, some of it will be wicked into the bushing.
  • In each case, above, make sure that one wicks up excess lubricant with a paper towel or tissue.

Removing the motor and potentiometer assemblies:

IMPORTANT:  If you remove either potentiometer - even momentarily - you will have to recalibrate the potentiometer setting to the physical position of the tuning capacitor:  The procedure for doing this is described farther down this page.

First, remove the potentiometer bracket using the four screws along the bottom edge - two per potentiometer - just below the pots as depicted in Figure 7.

When this is done the motor and potentiometer assembly may be carefully pulled out.  Note that the potentiometer and motor assemblies are still connected via their wires, so be careful not to stress or break them.

Figure 9:
Lubricating the end of the motor shaft after the plate has
been removed:  After working the oil into the shaft by
spinning/powering it and moving it up and down,
wick up the excess oil with a paper towel or tissue.
Click on the image for a larger version.
Using a very small Philips (tm) type screwdriver, remove the two screws on the plate as indicated in Figure 8 along with two similar screws on the same plate on the other side of the motor:  Note the style of these four screws as you remove them and carefully set them aside.

Now, you have easy access to the worm gears and ends of the motor shafts which may be lubricated as depicted in Figure 7.  Again, the small puddle of oil can be worked into the end of the shaft by spinning it with one's fingers and gently moving pulling the shaft up and down, taking advantage of the small amount of end-play.  Once you are satisfied that a reasonable amount of oil has worked into the shaft - often evidenced by the fact that they "feel" smoother and to not squeal when spun by finger or when powered up - mop up excess using a tissue or paper towel.

Finally, do not forget to lubricate both motors - even if only one was making noise!

At this point again apply voltage (6-12 volts) to each motor, one-at-a-time and allow it to run - the shaft facing upwards - for a minute or two - to work the lubrication in.  When free-running, each motor should draw between 30 and 50 milliamps.  Also listen to the motor to determine if it sounds quiet and free of rattle or squealing:  If the motor makes excess noise and/or the current is significantly higher than 50 milliamps it may need to have its "other" bushing lubricated - or it may have already sustained damage.

Lubricating the bushing on the "brush" end of the motor:


It is recommended that you do this step only if the motor continues to make noise after working lubrication of known-good quality into the shaft end of the motor as noted above.
Disassembling and reassembling the motor is a bit tricky and requires attention to detail and it is possible that the motor can be damaged/destroyed by performing this procedure without due care!
If you wish to continue and disassemble the motor further, you are doing so with the presumption that you have good mechanical skills and some experience at doing this.  Furthermore, you undertake this task entirely at your own risk!

Unfortunately, the "other" end of the motor shaft is not accessible without partially disassembling the motor.  As noted above, doing this task involves care, observation and careful attention to detail!  It is also recommended that only one motor be worked on at a time.
Figure 10: 
Removing the metal end cap from the motor.  This is necessary
ONLY if you have determined that the motor bushing opposite
the shaft end is dry as well.
Warning:  Disassembling the motor requires good mechanical
skills to do so without damaging it and should be undertaken
ONLY if you feel confident in doing so.  If done improperly,
the motor can be damaged/destroyed!
Click on the image for a larger version.

For this task, the first thing to do is to mark the motor closest to the "L" or "R" indication on the circuit board:  Making a scratch on the motor case is recommended as an ink marking may be easily rubbed off in handling.  Now, unsolder the circuit board from the end of the motor and set it aside. Now remove the motor from the bracket using the two, short screws - which should be very carefully set aside -

Using a very thin blade - of a knife or screwdriver - work it between the metal end cap and the white tab on the side of the motor.  This cap snaps into a slight groove in the main motor housing and should pop off fairly easily.

With the metal cap removed, carefully work the blade under the white plastic tab and the body of the motor, working it up to form a slight gap.  Now, while spinning the shaft back-and-forth, carefully work the plastic motor end-cap up and off the end of the motor shaft.

At this point look for a small, white plastic cap with a hole in it the size of the motor shaft:  Usually it will still be on the shaft of the motor itself, next to the armature, but sometimes it will remain in the end-cap, under the brushes.  If the latter has occurred, carefully slide it out from underneath the brushes and put it on the motor shaft with the slight ridge oriented to the inside (toward the windings) of the motor, toward the armature:  This ridge helps space and insulate the armature.

Now, using a small screwdriver or wire as an aid, place a very small drop of oil inside the bushing in the plastic end-cap.  Since it is almost impossible not to get a bit of oil on the brushes, carefully use a bit of tissue or paper towel to wick away excess outside the bushing and on the brushes.

Look at the brushes very carefully:  They should be straight, overlapping and almost touching in the center where the shaft goes through.  If they are not and/or are slightly bent, using a small pair of tweezers, very carefully straighten them out:  The idea here is that when the motor is reassembled, the brushes should gently touch the armature.  Note that these brushes are split and have two "leaves".

Now comes the tricky part and where damage to the motor is most likely:  Reinstalling the end cap.

Look at the plastic end cap and note that there are two slots:  These are used to move the brushes away from the armature when it is being assembled, and to do this a small tool - made of, say, #22 wire or a bent paper clip, must be constructed.  First, bend a length of wire in a square-cornered "U" shape so that it can slip easily into both slots, protruding in only a few millimeters as to be able to move the brushes.  The idea here is to insert this tool into the slot as far clockwise as possible (viewed from the end of the cap) and then once it is inserted, rotate it counter-clockwise to move the brushes out of the way while simultaneously putting the plastic cover over the end of the motor.  Doing may be made easier by clamping the motor housing gently in a vise to hold it secure.

If all goes well the plastic cap should seat into its original position and the motor shaft should turn easily.  If the plastic cap does not want to easily go on straight and/or the motor shaft does not spin smoothly and easily once the cap is reinstalled and leveled, carefully remove it - inspect the brushes and, in necessary, use tweezers to very carefully straighten them out, and try again.

Once you have gotten the plastic end cap into place, apply voltage to the motor again:  It should run.  If it is open, a brush is either hung up or bent out of place, but if the power supply indicates a short circuit (a very good reason to use a power supply limited to just an amp!) it is likely that the brushes are bent/out of position and the cap will need to be removed and the brushes inspected/adjusted.

If the motor runs and draws its expected 50-ish mA of current, orient the metal cap carefully over the solder terminals - aligning the square protrusions with the solder terminals in the plastic with the square holes in the cap and snap it back into place.  Again, check the motor to verify that it runs.

Soldering the motor back to the circuit board, take note of the mark that you made when removing it.  If you didn't happen to note which polarity of the motor went where, look very carefully at the white plastic square protrusions at the solder terminals you will notice that one is marked with a plus (+) sign:  The positive (+) side should go nearest the terminal marked with "L" on the left-hand motor and should go farthest away from the terminal marked with "R" on the right-hand motor.

Once the motor has been reassembled, re-mount it on the metal plate using the small, short screws:  It is strongly recommended that one use blue or purple "thread locker" compound:  Do not use "red" locking compound as it may prove to be difficult to remove, if necessary.

Recalibrating the potentiometers to the tuning capacitors'

Now, using your fingers, spin the worm gear on the tuner's gear assembly so that each capacitor is precisely fully-meshed.  Note:  If you wish, you can do this after the next step, applying voltage (only 5-7 volts to achieve slower motion) to each motor as necessary.

With the motor(s) re-mounted to the motor mounting plate, reinstall the motor assembly/plate back on the tuner with all four screws, carefully engaging the worm gear:  Verify that the capacitors are still fully-meshed, briefly applying power to "fine tune" their position if necessary.  Using 5-7 volts instead of 12 volts for this step will cause the motor to move more slowly, making it easier to precisely set the capacitors to the "fully meshed" position.

Again, note that the two screws along the bottom edge of the motor plate are partially blocked by the circuit boards on the motor, causing the screwdriver shaft to be offset slightly:  Carefully start the screws to assure that they are straight and not cross-threading before torquing them with the screwdriver.


If you had to remove the potentiometers for any reason, it is very likely that their position - which provides indication of the physical setting of the capacitors to the radio's computer - got disturbed.
Again, it is necessary to make sure that the potentiometers are set to a certain value with respect to each capacitor being fully meshed in order to assure proper tuner operation and to prevent breakage of the potentiometer and stalling of the motor and burning it out.

It is now time to re-mount the potentiometer assembly.  Referring again to Figure 7, above, orient the potentiometers as shown:  If the wires are on the "wrong" side of the motors due to handling, they can be carefully re-routed through the gap between the two motor circuit boards.

On each potentiometer locate the "top" (upper-most) of the three terminals - that is, the one farthest away from the mounting bracket with the two screws - and the center terminal.  Using an ohmmeter, adjust each potentiometer for 1.75-1.85k across the top and center terminals.  Now, barely start the four screws that hold the pair of potentiometer brackets in place and, pushing the gears on the potentiometers onto the gear assembly of the tuner, re-check the reading on each with an ohmmeter. 

If it is outside the range of 1.75-1.85k, there is enough room on the still-loose screws to move the potentiometer far enough away to disengage the gear:  Move the potentiometer one "gear tooth" at a time in this manner to get the reading as close to the 1.75-1.85k target as possible:  A value between 1.7 and 1.9k for a fully-meshed capacitor should be fine.  (One "tooth" of a potentiometer is equal to approximately 150-250 ohms of resistance.)

Once the two potentiometers are properly set with the above values, tighten the screws and re-check the potentiometer values before proceeding as they may shift slightly when maneuvering the screws.  It is worth noting that the holes on the potentiometer brackets are slotted, allowing each potentiometer to be moved slightly back-and-forth, individually, to "tweak" the values if desired.

It is not important that the potentiometers be set exactly for the above values as the total resistance values of these potentiometers can vary by 10% - it needs only be within the general range so that the radio's computer can read the analog voltage on the wiper leads of these potentiometers and then "pre-set" the capacitors' positions when one changes bands.  It should go without saying that once the radio is assembled, unless the potentiometers are exactly where they had been previously you may need to make the radio go through a tuning cycle.

Reassembling and reinstalling the tuner:
Figure 11:
The routing of the flat, white ribbon cable.

Now, reassemble the tuner, first putting the top and bottom covers on, noting that the cable connecting the potentiometers and motors goes outside of the top cover.  Now re-mount the tuner - avoiding trapping of any wires - into the radio using the three screws, plugging in the cable from the motors/potentiometer and the flat ribbon cable - routed as shown in Figure 11.  Now connect the two coaxial cables - the one with the piece of white shrink tubing on it going to the front - along with the multi-conductor cable that connected near the front corner of the low-pass board.

Final checkout:

The tuner/radio may now be tested:  Operate the tuner as normal and both capacitors should quietly adjust themselves as you change bands and a match be found when the button is pressed to cause it to tune.   After verifying that the tuner is operating normally, put the rest of the covers back on and enjoy the radio!

Sunday, June 12, 2016

A 1:1 balun was the best choice for feeding the horizontal loop...

Years ago I bought a Heathkit SA-2060 (non "A" version) 2kW-rated antenna tuner at a local swap meet for a good price.  While not as heavy-duty as some of the venerable Collins or Viking tuners, it had a nice-sized roller inductor and a pair of large, wide-spaced variable capacitors in a typical "T" ("High-pass") configuration.
Figure 1:
The Heathkit SA-2060 tuner and (now) 1:1 balun feeding the 450 ohm
window line.  It no longer sits, on edge, in the window, as it had previously -
a much more convenient arrangement!

I have used this antenna tuner for years, taking it to Field Day and other than having to tighten some screws and adding thread-locker as well as a bit of lubrication of the moving parts after I got it, it has served me well, (seemingly) capably matching the 200-something foot circumference horizontal "lazy loop" antenna at my home QTH that is fed with 450 ohm window line.

A month or so ago I was doing some rewiring after having my main electrical panel replaced in conjunction with the installation of a PV (Solar) inverter system and to do this work I had to "open up" some wall and ceiling spaces in the room containing my ham shack - but this also meant that I had to disassemble and relocate much of what was in the shack to accommodate that which had to be moved out of the way.  While the "radio area" wasn't particularly disassembled for this task, I ended up piling a lot of stuff in that part of the room, essentially making it practically inaccessible.

One of the things that I did during this work was to pull a brand, new 240 volt, 20 amp circuit for my Heathkit HL-2020 linear (really an SB-221 with a brown color scheme) and once I had the room more-or-less back together I reconfigured the amplifier for 240 volts (there were minor complications to this - perhaps another story) and I was ready to get back on the air.  From what I'd read, the combination of the higher mains voltage and the Peter Dahl transformer would provide a higher plate voltage under load along with higher output with slightly less drive - and testing with the dummy load, this appeared to be true.

For years my tuner had been sitting on edge in the window with the 450 ohm window line coming through an insulated gap, past the vinyl window frame, and connecting directly to the balanced wire connection on the back panel.  In the rearrangement I'd needed to take the tuner out of the window and in the process one of the wires of the window line popped off - something that I noticed as I was preparing to test the amplifier under load.  Happening to have the receiver on at the time, I reconnected the leg of the balanced line and...

There was no difference in the signal strength of the received signals.

Something was definitely wrong here!  I would have expected that with one leg of the balanced line disconnected that I'd get at least an "S" unit or two difference in signal strength, but there was no obvious difference at all.  Grabbing a screwdriver I shorted the balanced line and, again, could hear no difference, either, so I connected my antenna analyzer and noted that while there was a good match through the tuner, it did not change much if there was one or two wires connected, or if the "balanced" terminals were shorted together.


Now, I was curious.  It would appear that I'd been actually running the "loop" in a "T" type configuration with the downlead being (more or less) end-fed and the remainder of the antenna being a sort of distributed top hat.  I've never really had trouble working other stations, nor had I really experienced any "RF in the shack" issues as I had a pretty decent, short ground with heavy decoupling of the HF coax feeding to the tuner via a large chunk of ferrite scavenged from an old computer monitor.  In other words, I'd had no reason to question the operation of the balun itself or how it functioned.

The tuner's cover was immediately off and I was comparing the balun connection with that of an SA-2060A manual that I'd found online and the results was inconclusive:  If the wires had been properly identified and taped at the time of initial construction, it looked correct, but if not the only way to verify this was to remove the balun and check it with an ohmmeter.   

I regret that I didn't make a note of how the balun core was wired, but I do know that it wasn't at all right so I made the necessary changes and then tested the balun on the bench with the antenna analyzer and the other end of the balun terminated with a 200 ohm resistor.  Unlike the original configuration of the balun, according to the analyzer it was now working as it should, having a reasonable match to 50 ohms and going to infinity when resistor was shorted or removed.

Putting the balun back in the tuner and reassembling it I had to readjust from my previously-noted tuner settings to find a proper match (a good sign that the settings weren't the same, actually!) and I then checked it out with 100 watts on 40 meters.  Everything appeared to be fine, although the tuner struck me as a bit more "touchy" in its adjustments as compared to before.

Firing up the amplifier I soon discovered that I couldn't tune it up without its "Plate" variable capacitor arcing over noisily.  Grabbing a "Cantenna" dummy load I verified that the amplifier itself was fine, but something else was wrong.  Turning the power all of the way down and then slowly up again I discovered that at around 200 watts of RF output the reflected power went up, suddenly equaling the forward power.  Popping the cover off the tuner again confirmed my suspicion:  The "output" capacitor in the tuner was arcing over.

What this meant was that the tuner was being asked to match something really awkward - but with my loop and given its length I thought it unlikely that the feedpoint impedance would be really high, but rather it was more likely that it was "low-ish" - probably below 100 ohms.

The problem with this is that I now had a properly-working balun that provided an upwards impedance transformation.  This meant that if the loop had, for example, a 50 ohm feedpoint resistance on my loop, the tuner would be "seeing" around 12.5 ohms.  This is bad news as making a transformation from 50 ohms to 12.5 ohms implies the likelihood of a high-Q configuration of the tuner itself which, in turn, implies high voltage and high current which further implies high losses!

Wielding my antenna analyzer I connected its BNC connector directly to the balanced line:  Since the analyzer was hand-held and I was checking at "only" 40 meters I didn't think that it would really matter much that it was properly "balanced" or not.  The readings indicated a resistive component of around 10 ohms with a reactance of around 180 ohms inductive, but in tuning around to other amateur bands I couldn't make much sense out of the readings and was particularly suspicious when none of the resistance values seemed to go much above 50-80 ohms.

Suspecting that without the "bandpass filter" effects of the tuner that I was the victim of an AM broadcast station a few miles away being detected by the reflectometer bridge in the analyzer and causing false readings, I dusted off my Heathkit HD-1422 RX noise bridge and connected it to my FT-817, running on battery - this combination being comparatively immune to stray, off frequency RF and like the analyzer configuration that I'd used, more-or-less "balanced" without any obvious ground reference.  With that configuration I got a more sensible resistance reading of around 35 ohms and a reactance measurement in the area of 130 ohms, inductive.  If I took the 35 ohm reading seriously that would mean that the antenna tuner was trying to match something under 10 ohms through the balun!

Figure 2:
The exterior of the Balun Designs Model 1171t 1:1 "ATU" balun.
This model is equipped with studs on the top of its weatherproof case
for connection to a balanced feedline.
This brought to mind a discussion that I'd had with another amateur some time earlier.  He pointed out that it seemed silly that most baluns with tuners offered only a 4-fold impedance up-conversion, but it was likely that a typical antenna fed with balanced line was more likely to see a lower impedance on most bands unless there was a configuration that was particularly prone to high impedance like a 1/2 wave end-fed wire (e.g. a "Zepp" antenna), a rhombic (don't most of us wish we could have one of those!) or a full-wave dipole.  What this meant was that in most cases that the average amateur would encounter, the tuner was going to be matching to substantially lower than 50 ohms resistive through the balun - something that is likely to cause problems like loss - which is invariably accompanied by heating - and high voltages, internally.  What had been a reasonable hypothetical scenario was manifesting itself as reality!

The clear solution in this case was to use a 1:1 balun, instead.  I had the choice of reconfiguring the existing 4:1 balun - which was now working properly - perhaps by rewinding it with some PTFE 50 ohm coax - but I decided, instead, to get another balun and keep the internal balun intact in the event that it would be needed (it's nice to have options!) as it could be easily inserted or removed from the circuit using a jumper on the rear panel.  Because I was intending that I be able to use the tuner/balun combination with my amplifier which was capable of the full 1500 watts output, I also knew that it needed to be both low loss and capable of handling very high voltages and high currents.

In perusing the various web sites and forums I looked at the possibility of making my own balun, but ultimately decided on the "1:1 ATU Balun" by a company called "Balun Designs." - link.  The products of this company not only had good reviews, but their web site was also impressive explaining in good, sensible detail why one balun was better than another for a particular application and also outlining situations where certain baluns that they sold should not be used and why.

Figure 3:
Inside the 1:1 balun.  It is wound with parallel, highly-insulated
enameled copper wire in the "Guanella" fashion - that is, the second
"half" of the windings cross over to minimize coupling
between the input and output to provide best isolation and to
minimize the "one turn" effect inherent with "normal" toroid
winding techniques.
The balun that I chose (Model #1171t) is a current balun which effectively operates in series with the signal path (unlike a more common "voltage" balun which typically resembles an autotransformer as in the case of a typical 4:1 balun) and is essentially a common-mode choke that isolates one side of the balun from the other by virtue of the bulk inductance of the core over which a transmission line is wound.  By suppressing the "common mode" aspects of the RF signals with a significant amount of inductance, the windings on the toroids effectively "choke" anything other than differential (balanced) currents and thus isolate one section of the feedline from the other - except for the equal-and-opposite RF that is supposed to be there!

While many of these current baluns are wound with PTFE coaxial cable to preserve the 50 ohm impedance, this particular balun was wound with what amounts to parallel-conductor transmission line consisting of enamel copper wire covered with PTFE spaghetti tubing.  What this means is that this "parallel transmission line" winding inside particular balun isn't particularly close to 50 ohms in its natural impedance (it's likely in the 70-100 ohm range) when terminated with a 50 ohm load the apparent match, when viewed with an antenna analyzer seems to degrade as frequency increases - likely a result of the "transmission line" comprising the balun's winding causing some impedance transformation.  This is of relatively little importance for this application since it sits on the output of an antenna tuner:  As long as it is low loss and can withstand the expected voltages and currents, it would have minimal effect on the overall system efficiency.

When this balun arrived I connected it to the output of the SA-2060 tuner with a short (approx. 18") RG-8 style jumper and was easily able to tune the antenna with settings radically different than before - another good sign!  Finding that everything looked good on the analyzer, I hit it with 100 watts - then 1500 watts and had no problems at all.  I did notice that the window line became warm to the touch and the balun core and windings also became perceptibly warm, but by no means "hot" as the thermal image in Figure 4 depicts.

Figure 4:
A thermal image showing the heating of the balun and transmission
line.  As can be seen, the closer to the "output" of the balun, the
warmer the windings got, but after approx 20 seconds at 1100 watts of
RF on 40 meters their temperature stabilized.  The image
above depicts a maximum temperature inside the balun of less
than 120 degrees F (49C) with the feedline at approximately
105 F (41C) both being warm, but not "hot."   (The "warm" UHF
connector at the bottom appears thus as it is reflecting heat from
elsewhere in the shack.)  Considering that over 1kW
of RF is flowing, this amount of heating represents negligible loss - likely
less than that occurring within the tuner itself.
Of course, the amount of heating will depend both on the power level
and the amount of current flowing through the balun, and this depends
on the matching/impedance conditions encountered.
I also observed that if I disconnected just one side of the balanced line the signals on the band dropped by several S-units and the relative floor relative to signals came up while shorting the two caused signals to all but disappear - exactly what I was expecting to happen in a circuit that properly rejected common-mode signals.  When checking across the band at different times of day I also observed that the noise floor was 1-2 S-units lower than before and that the previously S-5 noise from the switching supply on the nearby DSL modem was now barely detectable at the S-2 noise floor on 40 meters:  Thus are the benefits of common-mode rejection in the prevention of electrical noises from the shack and the house's electrical system from being conducted onto the feedline/antenna and into the receiver.

As far as the warming of the window line I did some calculation and determined that the feedline was likely seeing a VSWR somewhere in the range of 8:1 to 20:1 or so, which meant that it was losing as much as 0.5 dB along its 30 foot run - a worst-case loss of up to 11%, or in the area of 150 watts maximum at the test power of 1100 watts.  This is a small fraction (approximately 1/12th) of an "S" unit, but it would certainly explain the warmth!

A few days later I had the opportunity to check into a 40 meter round table with a group of friends across the western U.S. and conditions were abysmal, but not only could I hear all of the stations pretty well, one of the stations with the weaker signals reported that they could hear my just fine, with my signals being comparable to another station across town from me running about the same power - a reasonable indication that I wasn't burning up too much power in losses!

Final comments:
  • One of the first things that I do when I get gear at a swap meet - commercial, commercial kit or homebrew - is to check it out, making sure that all hardware is tight and electrical connections are solid, but I will admit that it never occurred to me to check to see that the balun was wired properly!
  • While the implementation of the new balun reduced my 40 meter noise floor from about S-5 to S2, I still could hear some low-level noise related to the AC mains and a small switching supply in my shack.  After a few weeks it finally occurred to me that where the new balun was hanging by the feedline placed it squarely over a small switching supply in a wall-mounted outlet strip.  When I moved the balun away from the power supply the noise floor went from S-2 to S-1 or so and I now hear only atmospheric noise:  For a while I had a metaphorical palm-shaped dent in my forehead!